FUNCIONES

Escrito por veguijeluk 17-05-2007 en General. Comentarios (13)

FUNCIONES

 

CONCEPTO:Esas gráficas establecían una relación (numérica en este caso) entre dos magnitudes: el tiempo (medido en minutos) y la distancia (medida en km). Como puedes comprobar, en las cuatro gráficas se verifica que en un determinado instante, t, el punto que representa la distancia recorrida no puede estar en dos posiciones diferentes. En otras palabras, a un valor determinado de t le corresponde un valor y sólo uno de la distanci

 

Imagen:Surjection.svg

 

 

función de aplicación

 

LA  RELACION DEBE SERUNO  A  UNO

Imagen:Bijection.svg

funciones  especiales  

 

Función lineal

Una función lineal es una función de la forma f(x) = mx + b, donde m es diferente de cero, m  y  b son números reales.  La restricción m diferente de cero implica que la gráfica no es una recta horizontal.  Tampoco su gráfica es una recta vertical.  El dominio y el recorrido (rango) de una función lineal es el conjunto de los números reales. 

 f=(x)2x+1

 

 

 

 

 Función constante

Definición:

 

Es una función cuyo dominio y codominio es el conjunto de números reales. Su fórmula es:

 

  ¦ :  ®   /  x = k

 

y su  representación gráfica es una recta paralela al eje de abscisas que intercepta al eje de ordenadas en el punto (0; k).

 

 

Es una función cuyo dominio y codominio es el conjunto de números reales. Su fórmula es:

 

  ¦ :  ®   /  x = k

 

y su  representación gráfica es una recta paralela al eje de abscisas que intercepta al eje de ordenadas en el punto (0; k).

f(x)=k

 

 

 

Función identidad

Una función identidad es una función, de un conjunto M a sí mismo, que devuelve su propio argumento.

La función identidad puede describirse de la forma siguiente:

id_M : M \mapsto M
id_M(m) = m \,

La función identidad es trivialmente , es decir:

id_M(id_M(x)) = id_M(x) = x \,

FUNCIÓN VALOR ABSOLUTO

    La función valor absoluto  asocia a cada número su valor absoluto, es decir su valor prescindiendo del signo, esta función se puede escribir descompuesta en dos tramos:

                                                                           

    En general cualquier función valor absoluto se puede escribir como una función a trozos. Observa la gráfica siguiente y comprueba que el valor absoluto de una función se puede obtener transformando la parte negativa en positiva.

 

 

Valor absoluto de una función cuadrática

    Cuando se aplica el valor absoluto a una función cuadrática, dicha función se puede descomponer en tres tramos, los límites de los intervalos que marcan dichos tramos son los puntos de corte de la función cuadrática con el eje de abscisas, por ejemplo:

 

                                                                                   

Observa en la siguiente escena que, al igual que en la gráfica del valor absoluto de una función de primer grado, se obtiene también transformando la parte negativa en positiva.

FUNCIÓN PARTE ENTERA

   La función parte entera y= E(x), hace corresponder a cada número real x, su parte entera. Todo número real está comprendido entre dos números enteros, la parte entera de un número es el menor de los números enteros entre los que está comprendido:

- la parte entera de 1,25 es 1, sin embargo de -1,25 es -2 , ya que -1,25 está comprendido entre -1 y -1 y -2<-1  

Es una función constante por intervalos como se puede observar en la sgte: